3.2.98 \(\int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx\) [198]

3.2.98.1 Optimal result
3.2.98.2 Mathematica [A] (verified)
3.2.98.3 Rubi [A] (verified)
3.2.98.4 Maple [A] (verified)
3.2.98.5 Fricas [A] (verification not implemented)
3.2.98.6 Sympy [F(-1)]
3.2.98.7 Maxima [B] (verification not implemented)
3.2.98.8 Giac [F]
3.2.98.9 Mupad [F(-1)]

3.2.98.1 Optimal result

Integrand size = 25, antiderivative size = 154 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\frac {5 \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {5 a \sqrt {\cos (c+d x)} \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {5 a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

output
5/8*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+5/12*a*cos 
(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*a*cos(d*x+c)^(5/2)*s 
in(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+5/8*a*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+ 
a*cos(d*x+c))^(1/2)
 
3.2.98.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.68 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (15 \sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \left (14 \sin \left (\frac {1}{2} (c+d x)\right )+3 \sin \left (\frac {3}{2} (c+d x)\right )+2 \sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{48 d} \]

input
Integrate[Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]],x]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(15*Sqrt[2]*ArcSin[Sqrt[2]*Si 
n[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x]]*(14*Sin[(c + d*x)/2] + 3*Sin[(3*(c 
+ d*x))/2] + 2*Sin[(5*(c + d*x))/2])))/(48*d)
 
3.2.98.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3249, 3042, 3249, 3042, 3249, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {5}{6} \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

input
Int[Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]],x]
 
output
(a*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (5*(( 
a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3*((S 
qrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Sqr 
t[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4))/6
 

3.2.98.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3249
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)/(b*( 
2*n + 1)))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 
3.2.98.4 Maple [A] (verified)

Time = 11.51 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.17

method result size
default \(\frac {\left (8 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+10 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+15 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+15 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{24 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(180\)

input
int(cos(d*x+c)^(5/2)*(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/24/d*(8*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+10*sin 
(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+15*sin(d*x+c)*(cos(d* 
x+c)/(1+cos(d*x+c)))^(1/2)+15*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)) 
)^(1/2)))*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/(cos(d* 
x+c)/(1+cos(d*x+c)))^(1/2)
 
3.2.98.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.70 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\frac {\sqrt {a \cos \left (d x + c\right ) + a} {\left (8 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right ) + 15\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 15 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/24*(sqrt(a*cos(d*x + c) + a)*(8*cos(d*x + c)^2 + 10*cos(d*x + c) + 15)*s 
qrt(cos(d*x + c))*sin(d*x + c) - 15*sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt 
(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d* 
x + c) + d)
 
3.2.98.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(5/2)*(a+a*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.2.98.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1921 vs. \(2 (128) = 256\).

Time = 0.58 (sec) , antiderivative size = 1921, normalized size of antiderivative = 12.47 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
1/96*(4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3* 
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d 
*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arctan2( 
sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), co 
s(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*a 
rctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arcta 
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan 
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c 
), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 
3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 
 5*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(s 
in(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3 
*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), 
 cos(3*d*x + 3*c))) + 3*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c) 
)) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c) 
)), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 
15*sqrt(a)*(arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) 
^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*ar 
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin 
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(...
 
3.2.98.8 Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\int { \sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(5/2), x)
 
3.2.98.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )} \,d x \]

input
int(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(1/2), x)